5 research outputs found

    Robust neurooptimal control for a robot via adaptive dynamic programming

    Get PDF
    We aim at the optimization of the tracking control of a robot to improve the robustness, under the effect of unknown nonlinear perturbations. First, an auxiliary system is introduced, and optimal control of the auxiliary system can be seen as an approximate optimal control of the robot. Then, neural networks (NNs) are employed to approximate the solution of the Hamilton-Jacobi-Isaacs equation under the frame of adaptive dynamic programming. Next, based on the standard gradient attenuation algorithm and adaptive critic design, NNs are trained depending on the designed updating law with relaxing the requirement of initial stabilizing control. In light of the Lyapunov stability theory, all the error signals can be proved to be uniformly ultimately bounded. A series of simulation studies are carried out to show the effectiveness of the proposed control

    Adaptive fuzzy control for coordinated multiple robots with constraint using impedance learning

    Get PDF
    In this paper, we investigate fuzzy neural network (FNN) control using impedance learning for coordinated multiple constrained robots carrying a common object in the presence of the unknown robotic dynamics and the unknown environment with which the robot comes into contact. First, an FNN learning algorithm is developed to identify the unknown plant model. Second, impedance learning is introduced to regulate the control input in order to improve the environment-robot interaction, and the robot can track the desired trajectory generated by impedance learning. Third, in light of the condition requiring the robot to move in a finite space or to move at a limited velocity in a finite space, the algorithm based on the position constraint and the velocity constraint are proposed, respectively. To guarantee the position constraint and the velocity constraint, an integral barrier Lyapunov function is introduced to avoid the violation of the constraint. According to Lyapunov's stability theory, it can be proved that the tracking errors are uniformly bounded ultimately. At last, some simulation examples are carried out to verify the effectiveness of the designed control

    Asymmetric bounded neural control for an uncertain robot by state feedback and output feedback

    Get PDF
    In this paper, an adaptive neural bounded control scheme is proposed for an n-link rigid robotic manipulator with unknown dynamics. With the combination of the neural approximation and backstepping technique, an adaptive neural network control policy is developed to guarantee the tracking performance of the robot. Different from the existing results, the bounds of the designed controller are known a priori, and they are determined by controller gains, making them applicable within actuator limitations. Furthermore, the designed controller is also able to compensate the effect of unknown robotic dynamics. Via the Lyapunov stability theory, it can be proved that all the signals are uniformly ultimately bounded. Simulations are carried out to verify the effectiveness of the proposed scheme

    Tracking control of a robotic system with deferred constraints and actuator faults

    No full text
    Abstract This paper proposes an adaptive sliding mode tracking control for a robotic manipulator to guarantee a deferred performance under input non‐linearities and external perturbations. Control inputs of the robotic manipulator are entrapped into saturation and failures simultaneously. A common method to deal with output constraints is based on the barrier Lyapunov function, which requires the system states to be within the prescribed bounds initially; an error‐shifting transformation is utilized and barrier functions are integrated into sliding model control to remove the unreasonable requirement and to realize a finite time convergence result collectively. Furthermore, the actuator faults are accommodated without any prior knowledge. Simulation examples are provided to verify the effectiveness of the proposed scheme
    corecore